
CORBA
The Common Object Request Broker Architecture (CORBA) describes a messaging
mechanism by which objects distributed over a network can communicate with each
other irrespective of the platform and language used to develop those objects. CORBA
enables collaboration between systems on different operating systems, programming
languages, and computing hardware. CORBA uses an object-oriented model although
the systems that use the CORBA do not have to be object-oriented.

The essential concept in CORBA is the Object Request Broker (ORB). ORB support in
a network of clients and servers on different computers means that a client program
(which may itself be an object) can request services from a server program or object
without having to understand where the server is in a distributed network or what the
interface to the server program looks like. To make requests or return replies between
the ORBs, programs use the General Inter-ORB Protocol (GIOP) and, for the Internet,
its Internet Inter-ORB Protocol (IIOP). IIOP maps GIOP requests and replies to the
Internet's Transmission Control Protocol (TCP) layer in each computer.

The CORBA specification defines an architecture of interfaces and services that must
be provided by the ORB, no implementation details. These are modular components so
different implementations could be used, satisfying the needs of different platforms.

The ORB manages the interactions between clients and object implementations. Clients
issue requests and invoke methods of object implementations. There are two basic
types of objects in CORBA. The object that includes some functionality and may be
used by other objects is called a service provider. The object that requires the services

of other objects is called the client. The service provider object and client object
communicate with each other independent of the programming language used to design
them and independent of the operating system in which they run. Each service provider
defines an interface, which provides a description of the services provided by the client.

Dynamic Invocation - This interface allows for the specification of requests at runtime.
This is necessary when object interface is not known at run-time. Dynamic Invocation
works in conjunction with the interface repository.

IDL Stub - This component consists of functions generated by the IDL interface
definitions and linked into the program. The functions are a mapping between the client
and the ORB implementation. Therefore ORB capabilities can be made available for
any client implementation for which there is a language mapping. Functions are called
just as if it was a local object.

ORB Interface - The ORB interface may be called by either the client or the object
implementation. The interface provides functions of the ORB which may be directly
accessed by the client (such as retrieving a reference to an object.) or by the object
implementations. This interface is mapped to the host programming language. The ORB
interface must be supported by any ORB.

ORB core - Underlying mechanism used as the transport level. It provides basic
communication of requests to other sub-components.

IDL Skeleton Interface - The ORB calls method skeletons to invoke the methods that
were requested from clients. Object Adapters (OA) - Provide the means by which object
implementations access most ORB services. This includes the generation and
interpretation of object references, method invocation, security and activation.

Requests -The client requests a service from the object implementation. The ORB
transports the request, which invokes the method using object adapters and the IDL
skeleton
Object Adapters - Object Adapters (OA) are the primary ORB service providers to
object implementations. OA have a public interface which is used by the object
implementation and a private interface that is used by the IDL skeleton.

Source :- http://www.nyu.edu/classes/jcf/g22.3033-011_fa01/handouts/g22_3033_011_h41.htm

http://www.nyu.edu/classes/jcf/g22.3033-011_fa01/handouts/g22_3033_011_h41.htm

Jini
Jini is a service-oriented architecture that defines a programming model that both
exploits and extends Java technology. This programming model enables the
construction of secure, distributed systems consisting of federations of well-behaved
network services. Jini helps to build networks that are scalable and flexible, which are
required attributes in distributed computing scenarios.

Jini's main objective is to shift the focus of distributed computing from a
disk-drive-oriented approach to a network-adaptive approach by developing scalable,
evolvable and flexible dynamic computing environments. Jini makes resources over a
network look like local resources.

Using Jini, users will be able to plug printers, storage devices, speakers, and any kind of
device directly into a network and every other computer, device, and user on the
network will know that the new device has been added and is available. Each pluggable
device will define itself immediately to a network device registry. When someone wants
to use or access the resource, their computer will be able to download the necessary
programming from it to communicate with it. No longer will the special device support
software known as a device driver need to be present in an operating system. The
operating system will know about all accessible devices through the network registry.

Jini not only allows for the addition of printers, storage and other devices to a network, it
also allows the devices to be detected automatically over the network without having to
reboot the system. Hardware devices declare to their own operating systems as well as
to other computers, devices and users on the network that they have been added and
are available for use. This is possible because the devices define themselves to a
network device registry soon after they have been added.

Jini consists of four program layers:

● Directory Service
● JavaSpace
● Remote Method Invocation (RMI)
● Boot, Join, and Discover Protocol

The Jini architecture is divided into three main parts:

● Client: The user who accesses the resources shared over a network
● Server: The system to which the resources are attached
● Lookup Service: Services for resources such as printers, storage devices and

speakers, which are attached to the server and made available to clients over the
network

Jini has the following key advantages:

● Provides stable networking solutions
● Helps in upgrading systems
● Helps to keep old clients running while adding new ones
● Helps build scalable, dynamic and flexible networks

Limitations

Jini uses a lookup service to broker communication between the client and service. This
appears to be a centralized model (though the communication between client and
service can be seen as decentralized) that does not scale well to very large systems.
However, the lookup service can be horizontally scaled by running multiple instances
that listen to the same multicast group.

Source: https://docs.gigaspaces.com/xap/12.2/overview/about-jini.html

https://docs.gigaspaces.com/xap/12.2/overview/about-jini.html

Mach
Mach is a kernel developed at Carnegie Mellon University to support operating system
research, primarily distributed and parallel computing. Mach is often mentioned as one
of the earliest examples of a microkernel. However, not all versions of Mach are
microkernels.

Mach was developed as a replacement for the kernel in the BSD version of Unix, so no
new operating system would have to be designed around it. Mach and its derivatives
exist within a number of commercial operating systems. These include all using the
XNU operating system kernel which incorporates an earlier non-microkernel Mach as a
major component.

The Mach operating system was designed with the following three critical goals in mind:

1. Emulate 4.3BSD UNIX so that the executable files from a UNIX system can run
correctly under Mach.

2. Be a modern operating system that supports many memory models, as well as
parallel and distributed computing.

3. Have a kernel that is simpler and easier to modify than is 4.3BSD. Mach's
development followed an evolutionary path from BSD UNIX systems. Mach code was
initially developed inside the 4.2BSD kernel, with BSD kernel components replaced by
Mach components as the Mach components were completed.

TIB / Rendezvous

TIB/Rendezvous makes it easy to create distributed applications across heterogeneous
systems. In coordination-based systems where published data items are matched only
against live subscribers, reliable communication plays a crucial role. In this case, fault
tolerance is most often implemented through the implementation of reliable multicast
systems that underly the actual publish/subscribe software. There are several issues
that are generally taken care of. First, independent of the way that content-based
routing takes place, a reliable multicast channel is set up. Second, process fault
tolerance needs to be handled.

TIB/Rendezvous assumes that the communication facilities of the underlying network
are inherently unreliable. To compensate for this unreliability, whenever a rendezvous
daemon publishes a message to other daemons, it will keep that message for at least
60 seconds. When publishing a message, a daemon attaches a (subject independent)
sequence number to that message. A receiving daemon can detect it is missing a
message by looking at sequence numbers (recall that messages are delivered to all
daemons). When a message has been missed, the publishing daemon is requested to
retransmit the message.

Much of the reliability of communication in TIB/Rendezvous is based on the reliability
offered by the underlying network. TIB/Rendezvous also provides reliable multicasting
using (unreliable) IP multicasting as its underlying communication means. The scheme

followed in TIB/Rendezvous is a transport-level multicast protocol known as Pragmatic
General Multicast (PGM).

Implementation of TIB

- One of the two communicating tasks knows the name of the other and names it
explicitly.

- The second task knows only that it expects some external interaction.

- It is based on subject based addressing.

- Receiving a message on subject X is possible only if receiver had subscribed to X.

- Publishing a message on subject X means sending message to all subscribers of X.

Source:- http://csis.pace.edu/~marchese/CS865/Lectures/Chap13/Chapter13.htm

http://csis.pace.edu/~marchese/CS865/Lectures/Chap13/Chapter13.htm

